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ABSTRACT 

We prove that  for every polynomial-like holomorphic map  P,  if a E K 

(filled-in Julia set) and the component  Ka of K containing a is either a 

point or a is accessible along a continuous curve from the complement  of 

K and K~ is eventually periodic, then a is accessible along an external ray. 

If a is a repelling or parabolic periodic point, then the set of arguments  

of the external rays converging to a is a nonempty  closed "rotation set", 

finite (if Ka is not a one point) or Cantor  minimal containing a pair of 

arguments  of external rays of a critical point in C \ K.  In the Appendix 

we discuss constructions via cutt ing and glueing, from P to its external 

map  with a "hedgehog", and backward. 
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I n t r o d u c t i o n  

It is known (see [D] and [EL]) that every repelling periodic point of a polynomial 

P of degree d _> 2 is accessible from its basin of infinity DR along a curve, and one 

can choose the curve periodic under P. One of the results of the present paper 

is that every repelling periodic point of P is accessible along a special curve 

in DR: the so-called e x t e r n a l  r ay  [GM, Appendix A], [LS] (not necessarily 

periodic under P).  We prove also that  the set of the arguments of all external 

rays converging to this point is closed. It is a "rotation" set (i.e. an iterate 

of t --* dt(mod 1) on it is monotone - -  but not necessarily strictly monotone) 

finite or Cantor minimal. In the case J(P) ,  the Julia set of P,  is connected, 

the accessibility along an external ray follows immediately from the accessibility. 

This is Lindel5f's Theorem, see [CL]. In the case J (P)  is not connected this is 

less simple. We shall also rely on Lindel5f's Theorem but indirectly. (Recently a 

direct proof of the the accessibility along external rays has appeared [P2].) 

We work in fact in a more general setting: of polynomial-like mappings [DH], 

and lines Cleaves) to a Julia set of an f-invariant foliation T with singularities. 

Let us be more precise now. Fix a polynomial P of degree d _> 2. Let DR 

denote the basin of infinity 

DR = {z �9 s Pn(z) = P o . . .  o P(z)  ----* oo, n ~ oc}. 

s = C u {c~} denotes the Riemann sphere. 

The Julia set J(P)  is the closure of the repelling periodic points of P,  and for 

polynomials J(P)  coincides with the boundary of Dp. The set K ( P )  = s ". DR 

is called the filled-in Julia set. Denote by u(z) Green's function of the domain 

Dp with the pole at infinity. An e x t e r n a l  r ay  of P is a gradient line of u, i.e. a 

trajectory of the vector field grad u which joins infinity with the Julia set or else 

a limit of such lines. In the former case it is smooth, in the latter it can cross 

critical points of u. Of course if J (P)  is connected, all external rays are smooth 

because there are no critical points for P in Dp \ c~. 

The a r g u m e n t  of an external ray R is the asymptotic normalized angle t �9 

T = ~:/Z at which R goes to c~. The correspondence between external rays 

and their arguments is one-to-one on the smooth rays and two-to-one on those 

crossing critical points of u (see Figure la). 

Given z �9 J(P) ,  denote by A(z) the set of arguments of all rays, which have z 

as the end point (if such rays exist). So every t �9 A(z) is an e x t e r n a l  a r g u m e n t  

o f  Z. 
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It is known [D], [Y], [Mi] that if J (P)  is connected, i.e. DR is simply-connected, 

then A(a) is non-empty and finite provided a is a repelling or parabolic periodic 

point of P .  

J < 

./ 

T 

a E J  

/-%) 

Figure la. Two external Figure lb. A pair of 

rays with the same argument, critical external rays with arguments 

in A(a). 

In what follows J (P )  is not necessarily connected. 

THEOREM 1: Let a be a repelling or parabolic periodic point for P of period 

m(a).  Then 

1 ~ The set A(a) is a non-empty compact subset ofT.  It is invariant under the 
m(a} 

map o d , w h e r e  

ad: t --* d.  t (mod 1), 

i.e. ay(a)(A(a)) = A(a). 

2 ~ IrA(a) is infinite then the w-limit set w(to) of the ad(a)-orbit of every point 

to E A(a) contains a pair of external arguments t, t' of  a critical point for 

pro(a), which belongs to DR. Moreover, the set A(a) is a Cantor set and 
r e ( a )  . 

every forward vr d -orbit in A(a) is dense in A(a). See Figure lb. 

3 ~ I f  the component Ka of K ( P )  containing a is not a one-point set, then A(a) 

is finite. 

4 ~ I fA(a)  contains a periodic point, or is finite, then every t E A(a) is periodic 

under ad, o[ the same period. 
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Remark 1: The case when A(a) is infinite is really possible. For example, it can 

happen for a fixed point of a quadratic polynomial with disconnected Julia set 

[CM], 

Remark 2: It is not known whether the Cremer fixed point a of a quadratic 

polynomial is accessible from DR. But if it is so, then the set A(a) cannot be 

closed (Douady, Sullivan), see [Mi]. For recent progress in this direction see [K] 

and [P-M]. As is shown there, the critical point of a quadratic polynomial with 

the Cremer fixed point is not accessible from the basin of infinity Dp. 

From Theorem 1 we obtain immediately 

COROLLARY 1: The total number of the repelling and parabolic periodic orbits 

Orb(z) of P for which A(z) is infinite is bounded by the number of critical values 

of P in Dp. 

The assertion of Theorem 1, that A(a) r 0, will be concluded from the following 

THEOREM EL: Every repelling or parabolic periodic point a E J( P) is accessible 

from Dp along a curve l (this means a continuous map l : (0, 1] --~ cl(Dp) such 

that l((O, 1)) C DR and l(1) = a), such that Pn(l) = l for some n > O. 

This was proved in the case of every non-connected J (P)  for every repelling 

periodic point a in [EL] and for parabolic points in [E] and in [P2]. 

To deduce Theorem 1 from Theorem EL we shall prove the following 

THEOREM 2: Let a C J(P) .  Assume that either the component K~ of K ( P )  

containing a is a point or a is accessible along a curve l and K~ is eventual!y 

periodic (i.e. there exist integers n >__ O, k > 0 such that Pn+k(K~) = P~(K~).  

Then the point a is accessible along an external ray, which is equivalent in C \ K~ 

to I. In the case K~ = {a}, the set of the arguments of  all such rays is closed. 

We mean here that two curves in a domain U which converge to the same 

z E OU are equ iva l en t  in U if they are homotopic in U in such a way that  all 

the curves along the homotopy converge to z. 

In [P2] the accessibility of good points is proved. The assumption of being 

good is quite weak, all periodic repelling and parabolic points are good, moreover 

almost every point for an arbitrary P-invariant measure of positive Lyapunov 

exponents is good. So the assertion A(a) ~ 0 holds by Theorem 2 for every good 

a (such that  K~ is eventually periodic). 
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Let us mention that  in [P2] we prove directly that  A(a) ~ 0 for every good a. 

If J(P) is connected then DR is conformally equivalent to the disc D.  = 

{Izl > 1} in the Riemann sphere, and one can choose a conformal isomorphism 

B: D p  ~ D .  in such a way that  B o P = P0 o B and Po(z) = z d. The curve 

B(1) in D.  ends at a point z0 C S 1. By Lindel5f's Theorem the external ray 

B-l({pzo: p > 1}) also converges to the point a. If a is periodic then, as men- 

tioned above, we can find l such that  P~(1) = l for some n > 0. Hence zo is 

periodic for P0. The rest of the assertion of Theorem 1, that  there exist only 

finitely many external rays converging to a, now readily follows from the fact 

that  P preserves the order of the external rays converging to the point a [Mi, 

Lemma 18.3]. 

We are going to use the same ideas in the general case of the non-connected 

Julia set. Theorem 1 will be proved in a more general setting, namely, for 

polynomial-like mappings and T-external rays as mentioned at the beginning 

of the paper. We call then Theorem 1: T h e o r e m  17 and Theorem 2: T h e o r e m  

2 ~" ' 

The exact definitions will be provided in Section 1. Riemann mapping will be 

replaced by a map from the exterior of a hedgehog as in [LS], in the annulus of the 

external map for our polynomial-like map [DH]. An alternative way: constructing 

the external map annulus by some surgery on the original Riemann surface, a 

neighbourhood of the filled-in Julia set, will be discussed in the Appendix. 

ACKNOWLEDGEMENT: G. Levin is grateful to the Insti tute of Mathematics at 

the Polish Academy of Sciences in Warsaw for its hospitality. This work was 

basically done during his stay at this Institute. F. Przytycki thanks the Hebrew 

University of Jerusalem for its invitation and hospitality. 

1. E x t e r n a l  rays  a n d  a n g l e s  

According to Douady and Hubbard  [DH], a polynomial-like mapping of degree 

d > 2 is a triple (U, U1, f ) ,  where U and U1 are open subsets of C isomorphic to 

discs, with U1 relatively compact in U, and f :  U1 ~ U is a complex analytic and 

a branched covering mapping of degree d. 

A compact 
( x )  

K ( f ) - -  N f -n (V)  
n : l  
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is called a f i l led-in Ju l i a  set .  The Ju l i a  set  of f is J( f )  = OK(f).  Denote by 

Cf the set of all critical points of f in U1 \ K( f )  and Cf(cr = [.Jr f-'~(CI). 

The filled-in Julia set is connected if and only if Cf is empty. 

In the theory of polynomial-like mappings the e x t e r n a l  m a p  o f  f plays an 

important role. It is a real analytic expanding map hf: S 1 --~ S 1 of degree d, 

which is constructed as follows [DH]: 

Let W be an open topological disc with closure in U with smooth boundary, 

such that W1 = f - I ( w )  is also a topological disc (and hence Cf C W1), with 

closure in W. Let L c W1 be a compact topological disc in W1 containing 

f - l ( ~ )  and all the critical points of f .  Let an annulus Xn be a covering space 

of the annulus Xo := W \ L of degree d n, p,~: Xn+t ~ X,~ and 7rn: Xn --+ X0 be 

the projections and let X be the disjoint union of the X~. For each n choose a 

lifting 

jT: T~ = 7rnl(W1 \ L) -* X~+l, 

of f so that  p,~ o ]n = in-1 o Pn--1, see Figure 2. Let now A* be the quotient 

of X by the equivalence relation identifying x to in(x) for all x E Tn and all 

n = 0, 1 , . . . .  The open set A~ is the union of the images of the X~, n - 1, 2 , . . .  

under this identification, and h f: A~ -~ A* is the holomorphic map induced by 

Pn 's. 
The Riemann surface A* is isomorphic to an annulus of finite modulus, say 

logw. So we can identify A* with the annulus (z: 1 < Izl <: w} and use the 

Schwarz reflection principle to extend hf to an expanding map hf of S 1 (cf. 

e.g. [P1, Sect.7], we shall use this observation again in Proof of Lemma 2.1). 

By e x p a n d i n g  we mean here I(h~)'l > 1 for an integer m > 0. This is the 

external map of f .  It is defined up to a real analytic homeomorphism (change of 

coordinates) on the unit circle. 

We use this construction to define v-rays and their arguments as follows: 

Denote by Bf  a conformal isomorphism between neighbourhoods of the closures 

of 

Ao = W \ W1 

and 

A~ = A* \ A~ 

in W and A* respectively, such that By conjugates f and hf in W1 near the 

boundary of W1. This is just the identity if we remember that W \ L = Xo is 
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a part of A*. Let us fix a smooth foliation r in a neighbourhood of the closure 

of Ao invariant under f ,  and consider the foliation T* = Bf(r) in a neighbour- 

hood of the closure of A*. Assume that each leaf of T joins the outer boundary 

of Ao (i.e. cOW) to the inner one and intersects the boundaries transversally. 

Extend T and T* to new T and T* on W ". K( f )  and A* respectively by taking 

f-n(T), h)-l(T*), n = 1, 2, .... Then T* is a smooth foliation, while T is a smooth 

foliation with singularities at Cf (oc). 

-~',t+ i 

),'~ = I t '  \ L 

Figure 2. Douady-Hubbard 's  construction of the external map. 

Fix the orientations of T, T* positive towards K(f) ,  respectively S 1. The 

oriented leaves of these foliations are called v-lines, or T*-lines resp. The ini- 

tial point of every r-line is either a point of cOW or some point from Cf(co). In 

the former case the maximal T-line is the r - rad ius ,  in the latter case it is the 

T-CUt. We assume that the initial point of the v-cut belongs to it. 

We define a s m o o t h  T-ray as a v-radius which converges to J(f).  If a v-radius 

does not converge to J(f)  then it ends at a point of Cf(oc). In this case a r-  

r ay  (not smooth) containing the r-radius is defined as a limit of smooth v-rays, 

see [GM, Appendix A]. Of course there are two T-rays containing the v-radius, 

the limits from both sides of it. In the sequel we shall give another equivalent 
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definition of v-rays and define also their arguments with the help of the annulus 

A*. 

We call each leaf of T* in the annulus A* a v*-ray. Every point x in A* belongs 

to one and only one v*-ray, which we will denote by T*(X). 
We extend the map Bj. to map B~ as follows (el. [LS], [SN]). The domain A~ of 

B~ is by definition W without K(f)  and the T-cuts. This domain is a topological 

annulus because it is the union of the v-radii. Indeed one takes a smooth vector 

field V(v) on W ". K(f)  tangent to v, with zeros precisely at Cf(c~), directed 

towards K/(c~).  Then one parametrizes A~ by the initial points of the T-radii 

and the time along them given by the flow generated by V(T). 
Note that  W \ W1 is in A~. Now let z E A~ and T(Z) be the v-radius passing 

through z. Then B~(z) is defined as the only point x E A* such that  the part of 

v(z) in W \ W1 is mapped by B / t o  the part of T*(X) in A* \ A~, and 

(I.I) B.f(fn(Z)(z)) = h'}(Z)(x), 

where n(z) is the integer such that  fn(Z)(z) C W \ W1 
The map B~ is injective and it is a holomorphic continuation of B /a long . the  

v-radii, hence, it is a conformal isomorphism of A~ onto U~ c A*. It conjugates 

flAl: and hylv~,., where AI,~ = ArNW1 and U1,T - - - -  U~(']A~. 
The domain U~ is called a hedgehog- l ike  annu lus .  The inner boundary S~ 

of U~ is called a hedgehog.  It consists of the unit circle and the set of needles .  

We shall explain it below. 

Let us begin with defining the T-external  angle  ( a r g u m e n t )  of a r-radius 

R of f .  The image B~(R) is contained in a v*-ray R* C A*. This R* ends at a 

unique point e 2~rit, t E T, of the unit circle S 1. The limit set of R* is a point, 

because h / i s  an expanding map of the subannulus A~ and, hence, the Euclidean 

length of R* is finite (a similar assertion is proved in detail in Proof of Lemma 

2.1.1~ We will call t the r-external argument argB~ of the T-radius R (and its 

points) in the dynamical plane z ~ f(z) ,  and the v-argument arg~ of the curve 

R* (and its points) in A* (i.e. in the uniformization plane z ~ hi(z)):  

t = args~ (R) = argo(R*). 

In particular, we have defined the argument argo(x) of every point x E A*. 

Define N;; as the part of the leaf v*(x) starting from x to S 1. 
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Every point q E Cf is a common terminal point of a finite set of T-radii of f .  

Denote by AT(q) the set of the T-external arguments t of the corresponding radii 

Rt with the end at q E Cf. For t E AT(q), there exists 

lim B~(z)= J~r(q,t) 
z--*qzE R, 

(this equality is also a notation). 

The hedgehog ST consists of the unit circle S 1 and the set of all needles Nx, 

see Figure 3, [LS]: 

 .= luU UO U 
qEC I t e A .  (q) n=O h~(x)=lB'(q,t) 

t2 

Figure 3. The hedgehog. 

Let us recall that we defined each smooth T-ray in the dynamical plane as a 

T-radius R which extends up to the Julia set J(f) (i.e. R does not end at a point 

of Cs(cC)). Let the end point of R be now a point of Cf(oc). Then B~(R) lands 

at the top x of a needle Nx. The function (B~) -1 extends to two continuous 

functions B+ and B_ on two banks of Nx. (In other words, we cut along the 

needle and extend the map to the sides of the cut.) To see it formally use the 

formula (1.1) and the fact that  no point of a needle except points in S 1 is a limit 

of other needles, as their lengths shrink to 0. 
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This allows us to define the right and the left r-rays (non-smooth) containing 

the r-radius R: 

R~ -- B~I({~: 1 < [~[ < (x), argr(~) = t}), 

where t = argr(x ) (this is discussed in more detail in the Appendix). 

Denote this extension of (B~) -1 by/~.  

The a r g u m e n t  of a T-ray is the argument of a T-radius which is contained in 

the T-ray. 

It is comfortable to assume about r the following: 

F ide l i t y  a s s u m p t i o n .  Different T*-rays end at different points in S 1 (i.e. 

the correspondence between T*-rays and the external angles is 1-to-l). 

Remark 1.1: In Theorem 1 we have a special case, where T is the foliation into 

trajectories of the gradient flow for Green's function u on D p  for a polynomial 

P.  Indeed then f ( T )  = T (in the sense the image of each leaf is contained in 

a leaf to take care of singularities) because u o f = d .  u and f is holomorphic. 

Observe that the fidelity assumption holds. This is so because T* is a foliation 

into gradient lines for a harmonic function being the extension of u o B)  -1 on 

A* \ A~ to A*. This function converges to 0 on points converging to S 1 so it 

extends harmonically beyond S 1. Hence T* extends smoothly beyond S 1. 

Having given a polynomial-like f and W D WI, A* D A1 as above one can 

always find T satisfying the fidelity. For example, one can conjugate hf to z ~-* z d 

starting with an arbitrary smooth conjugacy (I) on a neighbourhood of W \ W1 

to a neighbourhood of {0 _< Izl < od}, 0 > 1 and extending it by (~ o h~)l /d" .  

Then one defines T* = r  foliation into radii). So T* extends through S 1, 

though it is usually not smooth there. 

Observe finally that the fidelity is not always true. For example, join a point 

z �9 O W  to Z 1 �9 OWl, f ( z l )  --- z and Wl �9 OWl, Wl • Zl close to zl t o  f ( w l ) .  

Then v*-leaves through B f ( z )  and B f ( w )  end at the same point in S 1. 

Definition 1.1: The set of external arguments is the unit circle, but to every 

base of a needle there correspond two T-rays (assuming the fidelity). To have 

a one-to-one correspondence between the external rays and their arguments one 

should cut the unit circle at all the bases of the needles. Then each external 

argument, base of a needle, in the above sense gives rise to external arguments 

of the rays R + and R- :  t + and t - .  This is Definition A.1 from [GM]. 
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We denote the set of all the external arguments in the above sense, i.e. the 

result of cuttings of T, by ~'. We denote the projection of ~" to T by /5. If 

we consider an external argument in ~" rather than in T we call it the external 

a r g u m e n t .  

Definition 1.2: We define a level  f u n c t i o n  M as an arbitrary smooth function 

W \ K ( f )  which is 0 on OW, 1 on OWl is strictly increasing on the leaves of T 

and M ( f ( z ) )  = M ( z )  - 1 for z E W1 \ K ( f ) .  (The letter M is from the analogy 

with the Morse function.) 

Let F denote the foliation (with singularities at Cf(co))  of W \ K ( f )  into the 

components of the constant M. 

From our definitions we deduce the following 

LEMMA 1.1: The mapping from T • ]~+ to W \ K ( f ) ,  mapping each (t, r) to the 

point on the T-ray with the ~argument t and the value of  the function M equal 

to r, is continuous. 

Remark  1.2: We remind the reader again that  the external arguments of T-rays 

(as well as the external map h/  itself) are defined only up to a real analytic 

homeomorphism of the unit circle. In particular there is no reason that  external 

arguments of preperiodic points are rational. If one wants a canonical description 

of external arguments one should either conjugate the external map to z --* z d 

but the change of coordinates would be usually not smooth, or change coordinates 

on S 1 to make the length measure invariant and 1 a fixed point. This defines 

external arguments mod 1 d--l" 

2. E x t e r n a l  rays  to  a c o m p o n e n t :  P r o o f  o f  T h e o r e m  2 

Let z E J ( f ) .  Denote by A~(z) the set of the T-external arguments t E T of the 

T-rays Rt, such that  the z is the unique limit point of Rt on J ( f )  (landing point 

of Rt). Similarly define the set / i~(z)  c T (see Remark 1.2). 

Remark 2.1: Though two external rays can have the same argument t E T, this 

happens only if they both contain a point c E Cl(OC ). Then they converge to 

J ( f )  in different components of C \ F(c) (F(c) is the union of the leaves of F 

containing c in the closures). So they cannot both land at the same z, hence the 

notation Rt makes sense. In other words the correspondence /5 b e t w e e n / ~ ( z )  

and AT(z) is one-to-one. 



40 G. LEVIN AND F. PRZYTYCKI  Isr. J. Math. 

As mentioned in Remark 2 of the Introduction, the set AT(z) can be empty. 

In any case, it is of zero Lebesgue measure (otherwise take a point of density 

and use the fact that the external map is expanding). Suppose the compact set 

Jr( f )  (the Julia set of f plus the T-cuts) is locally connected (it is the case, if 

f:  J ( f )  ---* J ( f )  is expanding). Then At(z) is a non-empty compact set for every 

z E J ( f )  (to prove this, use the map L/ its definition precedes the definition 

of the fidelity in Section 1). In the general case we do not know whether the 

compactness is always true (see Remark 2 in Introduction), but it is true if {z} 

is a component of J( f ) .  

PROPOSITION 2.1: Let x be a point, such that the single-point set {x} is a 

component of the Julia set J ( f ) .  Then the sets At(x) and At(x)  are non-empty 

and compact. 

Proo~ There exists such a sequence K~ of open sets bounded by leaves of F that 

Ki+l C Ki a n d  
OA) 

Ki = {x}. 
i----1 

Let Yl = {R~} be the set of "r-rays, such that each of them crosses the boundary 

OKi. Every such a ray has exactly one intersection with OKi. Let T~ = {t: Rt E 

Yi}. Evidently, Ti+l C Ti and Ti is a non-empty compact subset of T (by Lemma 

1.1) and Ni~=l Ti = ~,r(x) so it is also non-empty and compact. Hence the same 

holds for At(x)  = P(/~r(x)).  This ends the proof. 

Remark 2.2: Observe that it does not matter  whether we prove the compactness 

of ~-r (x) or of At(x),  because the compactness of the latter implies the compact- 

ness of the former. Indeed if/~(tn) ~ P(t0) for tn C/~r(x),  then to cannot be 

on the other side of its adjacent gap with respect to tn's because in such a case 

its ray would converge to a different component of J ( f )  than rays of tn's. They 

could not converge to the same x. 

Let K be a component of K( f ) .  Choose a conformal isomorphism ~ from the 

double-connected domain W1 \ K onto an annulus 

AK = {z: 1 < [z I < w(K)}. 

The non-singular leaves of the foliation F and T-rays are mapped under �9 to two 

families of curves. We will call those of them which either surround the unit circle 
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S 1 o r  have the limit set in S 1, K-related leafs and K-related rays, respectively, 

see Figure 4. Every K-related ray has the argument,  which is just the argument 

of the corresponding T-ray in W. The same concerns ^ arguments. 

@ 

Figure 4. Uniformization coordinates outside K.  

Remark 2.3: Let R be a T-ray (in W \ K ( f ) ) .  If it has a limit point in the 

component K,  then all its limit points belong to K since they form a continuum. 

Therefore, if a limit point of the curve /} = (I)(R) belongs to S 1 then all limit 

points of this curve belong to S 1, that  is , /} is a K-related ray. 

Remark 2.4: Observe that  the set of K related rays is non-empty and the sets 

of the corresponding external arguments or Aarguments are compact.  The proof 

is the same as Proof  of Proposition 2.1. 

LEMMA 2.1: Suppose that K is not one-point and that it is eventually periodic 

under f .  Then 

1 ~ Every K-related ray has finite length and, hence, converges to a unique 

point of S 1. The lengths of the parts of the rays where the function 

M o ~-1  ~ t converge to 0 uniformly (exponentially fast) as t --* oc. 

2 ~ The sets A(Zo) and A(Zo) of arguments and ^arguments of all K-related 

rays converging to a given point Zo of S 1 are non-empty compact in T 
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o r  T .  

3 ~ The set of all K-related rays in {z: 1 < Izl < 1 + e} converging to a point 

zo lies in an angle 

{z: I arg(z - zo) - argzol _< a}, 

where a 6 (0, r / 2 )  and e do not depend on Zo 6 S 1. 

Proo~ 1 ~ Passing to an iteration and to an f~- image we can assume that  

f ( g )  = g .  Let, as above, AK = r  \ K),  A1,/< = (I)(W1 \ K)  and 

g = ~ o f  o (I)-1 :At ,K  --~ AK 

be a conjugated map. For a leaf 70 6 F that  surrounds K,  there is a component 

71 of its f -pre image that  also surrounds K and lies in the component U(K)  of 

C \ 70 containing K.  If we denote the component of C \ 71 containing K by 

U ( K ) I  and 70 is chosen sufficiently close to K that  there are no critical points 

of f in U(K)  \ K,  we have 

K = N ( I I U ( K ) , ) - n ( U ( K ) )  �9 
n>_O 

The set K is not a point by our assumption. Hence by [P1, Section 7] the map 

g extends to an expanding holomorphic map in an annulus 

u0 = {z: 1 - po < Izl < 1 + po}, 

for some Po > 0. 

That  means that  after passing, if necessary, to an iterate of g (which we also 

denote g) we have 

(2.1) l(g-1)'(z)[ < a < 1 

for every z 6 Uo and for every branch g-1 such that  g - l ( z )  E Uo. 

Fix a K-related leaf % C U = AK N Uo. Then, for each n = 1, 2 , . . . ,  7n = 

{z E U: g'~(z) E %} is also a K-related leaf. Denote by l,~ the supremum of 

lengths over all the arcs of the K-related rays joining 7n and 7n+1, n = 0, 1, . . . .  
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Then (2.1) gives us: In < a n .  lo. Given a K-related ray, its length in the 

component of C \ ~0 containing S 1 is bounded from above by 

oo 

E anlo < ~ ,  
n~-O 

and its length in the component bounded by 7t is bounded by ~n~__t anlo which 

converges to 0 as t ~ co. 

2 ~ Fix a closed arc I C S 1. First, there exists a K-related ray converging to 

a point of I.  Otherwise no K-related ray ends in the interval gn(i) ,  for every n. 

This is impossible because gn(I) = S: for big n and the set of K-related rays 

is non-empty (see Remark 2.4). Second, we want to show that  the set A(I) of 

the "arguments of all K-related rays ending in I is closed in 4. It will imply the 

statement since ~(z0) = N ~(It)  over all closed intervals I1 covering z0. It also 

implies the assertion on ,k(z0) by the pro jec t ion/5 :  ~(zo) ~ •(Zo). 

The compactness of A(I) follows from Lemma 1.1 (continuity), the continuity 

of �9 and from the uniform convergence in the assertion 1 of our Lemma 2.1. A(I) 

is closed as the preimage, for a continuous function, of the compact set I. 

3 ~ By the Koebe distortion theorem one can choose 0 < p < Po such that  for 

every 

Z �9 U 1 = {Z: 1 - - p <  I~1 < : + p }  

every n = 1, 2 , . . .  and every holomorphic branch g-~ 

(2.2) I (g-n)'(x) (g-nl'(y) I < 2 

whenever Iz - x I < p and Iz - Yl < P. 

Introduce the following notations: 

Given x �9 U:, denote by Ix the part of the K-related ray passing through x 

between x and S 1 (if such a ray exists). This notation is correct: if another 

K-related ray passes through x and next ramifies from l~, it goes to a component 

of O(J ( f ) ) ,  not to S 1. So it is not K-related. (The same argument was used 

already at the beginning of this Section.) 

Denote by hx the interval which joins x and S: ,  orthogonal to S:.  Denote by 

I(x) and h(x) the corresponding Euclidean lengths. We can assume about the 

K-related leaf % in U1 that 

(2.3) l(x) < p for all x between % and S 1. 
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Set ~1 ---- g-l(~o).  There exists a positive ~30 less than 1 such that  

h(x) 
(2.4) l(x----) > ~o 

for all points x in the annulus V between ~o and ~1. 

Fix the maximal eo > 0 such that  

U2 = {z: 1 -  e0 < [zJ < 1 + co} 

does not intersect ~1. We intend to prove the assertion 3 ~ of our Lemma with 

a = arccos 

where L = sup Ig~J is a Lipschitz constant for g, and with e between 0 and eo so 

small that  1 < Jz[ < l + e  and h(z)/Jz-zo[ > 2 cos a implies [ a r g ( z - z o ) - a r g  zo[ < 

OL . 

It is enough to prove that  

h(x) j3o - - > j 3 = - -  
l(x) 4L 

for all x E U. Assume the contrary: there exists x ,  E U,which belongs to some 

K-related leaf ~, with 

(2.5) h(x , ) / l (x , )  < ~. 

Choose the first n such that  gn(x,) E V (that is, the K-related leaf gkn(~,) lies 

between ~o and ~1). 

The lengths h (0 and 1 (i) of the curves gi(h~,) and gi(lx,) cannot exceed p for 

all i = 0, 1 , . . .  ,n.  This holds for/(i) by (2.3), because gi(x,)  is between ~o and 

S 1. We cope with h(0's by induction: (h (~ < p by the definition of U1. If it 

holds for all i _< j - 1, then by (2.2) 

Then 

h(J-1) 
l(J_l) <_ 4. t~ = ~o/n. 

h (j) < Lh ( j- l )  </30 �9  < l(J-1) < p. 
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Now we use the assumption (2.5) and again apply (2.2), and we obtain for z. = 

gn(x.) �9 v, 

l(z.---~ <- l - ~  <- 4.  ~3 = Zo/L < ~3o. 

This contradicts (2.4). Lemma 2.1 is proved. 

ProoYof Theorem 2 (and 2~): The case {z} is a component of K ( f )  was consid- 

ered in Proposition 2.1. It  remains to consider the case of an eventually periodic 

component K containing z. We have assumed that  a curve l C W \ K ( f )  con- 

verges to the point z E J ( f ) .  Hence, the curve [ = O(l) converges to a point 

�9 S 1 and the limit of the function (I) -1 along the curve [ exists and equals 

z. By Lemma 2.1.3 ~ we can apply Lindelbf's Theorem (on the existence of the 

nontangential limit) to every K-related ray ending at the point 2. By Lemma 

2.1.2 ~ at least one such ray exists, which completes the proof. 

3. P r o o f  of  T h e o r e m  1 ( a n d  1 ~) 

LEMMA 3.1: Suppose that h: S 1 --~ S 1 is a continuous expanding map, i.e. there 

exist ~ > 0, ~ > 1 and k > 0 such that i f x ,  y E S 1, x ~ y, dis t (x ,y)  < 7, then 

dist(hk(x), hk(y)) > ~. dist(x, y). Let A be an h-invariant subset o r s  1, namely 

h(A) = A, on which h is monotone. Monotone means that for every x, y, z C S 1 

such that y is strictly between x and z, in the standard orientation on S 1, h(y) 

is between h(x) and h(z). (We allow h(y) = h(z) or h(x). I f  h(x) = h(z) then 

the condition is empty; we allow h(y) to be anywhere.) 

(Later, for y between or strictly between x, z, the notation x < y < z or 

x <_ y <_ z will be used. Similarly we shall consider x < y < z and x _< y < z.) 

Suppose also that 

(i) there exists an integer m > 0 and a point Xo E S 1, such that for every 

x , y  �9 A i f  xo < x < y < Xo then Xo < hm(x)  <_ hm(y) < Xo; 

(ii) i f  x, y �9 A, x ~ y and h(x) = h(y), then neither x nor y is periodic for h. 

Then every point in A is periodic of  the same period m. A contains at  most  

d m - 1 points, where d is the degree of h. 

Remark  3.1: This is slightly stronger than [Mi, Lemma 18.3] where strict mono- 

tonicity is assumed. Here we obtain the strict monotonicity only a posteriori in 

the assertion of Lemma. Remark that  we do not assume the compactness of A, 
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unlike in Lemma 3.2 below. Instead we have the point xo playing a separating 

role. This implies rotation number on A being rational, cf. Remark 3.3. 

Proof of Lemma 3.1: The proof is the same as in [Mi]. Let us recall it: We 

pass to an iterate so that  we can assume that  m = 1. Let x, h(x) C A \{xo} .  If 

h(x) ~ x, say Xo < x <: h(x) < Xo, then by induction: 

(3.1) xo < x < h (x )  < h2(x)  < . . .  < h a ( x )  < . . .  < xo. 

Otherwise h'~-l(x) < ha(x) = h~+l(x),  which contradicts (ii). 

Observe finally that  (3.1) contradicts the expanding property of h. 

We can cope now with x = Xo, setting as a new Xo the fixed point we have just 

found. The situation A consists only of x0 and its h-preimages different from x0 

is excluded by the assumption h maps A onto A. 

Recall also Douady's  Lemma (see for example [Mi, Lemma 18.8]): 

LEMMA 3.2: I f  h is a continuous expanding map on a compact metric space and 

A is a compact h-invariant set on which h is a homeomorphism, then A is finite. 

Proof of Theorem 1 (and lr): 

PROOF OF 1~ The hf . . . .  ( )-mvarlance of At(a)  follows from fm(a)(a) = a and 

the facts that: 

(1) the h f- image of a T-ray (restricted to W1) is a T-ray and 

(2) the fm(a)-preimage chosen close to a according to the branch of f-re(a)  

fixing a extends to a T-ray (not always uniquely), so hf maps A,(a)  "onto" 

The non-emptyness and compactness of A~(a) in the case Ka = {a} has been 

already discussed in Proposition 2.1 and Theorem 2. Here assume that  Ka is 

strictly larger than {a}. Of course K~ is periodic as containing the periodic 

point a. By the accessibility of a: Theorem EL, and by Theorem 2, we know 

that  the set A~(a) is non-empty. Let us prove that  this set is closed (in ~'). 

Introduce a subset X of S 1 as follows. A point x E X iff there exists a T-ray 

R converging to the point a such that  the K~-related ray r  converges to x. 

Taking into account Lemma 2.1.2 ~ it is enough to show that  the set X is finite. 

Note that  X contains a periodic point of the map g. This follows from the fact 

that  the point a admits a periodic (under f )  access l, see again Theorem EL. 

Hence the curve r ends at a periodic for g point b E S 1. Now the finitness of 
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X follows from Lemma 3.1 for h :-- g, A := X, Xo := b. In fact we can refer to 

[Mi, Lemma 18.3] because we know a priori that  g is stricly monotone on X,  as 

f'~(~) is a local homeomorphism around a. 

Let us prove this strict monotonicity: For each x, y 6 X observe that  x ~ y is 

equivalent to the property that  for each K-related ray R(x)  and R(y) ending at 

x, y respectively, ~P-I(R(x)) U ~ - l ( R ( y ) )  dissects K~ into two nontrivial pieces. 

Otherwise almost all rays converging to one of the two arcs in S 1 between x and 

y would have ~ - l - i m a g e s  converging to one point a. This contradicts the Fatou 

theorem. Thus take x ~ y in X.  r  U ~ - l ( R ( y ) )  dissects g a ,  so does 

the fm(a)-image, hence g(x) # g(y). 

We have proved that  the set X is finite, that  is, the set A~(a) is a finite union 

of the closed sets A(x), x 6 X,  and, hence, also closed. 

PROOF OF A PART OF 2~ Consider an arbi trary t 6 A~(a) for which w(t) is 

infinite. Consider the restriction of the (expanding) external map h f: S 1 --* S 1 

to the compact  w(t). The map h f: w(t) -+ w(t) is well defined, continuous and 

"onto". As we have assumed that  w(t) is infinite, it follows by Lemma 3.2 that  

the map h f: w(t) --+ w(t) is not a homeomorphism, that  is, there are two points 

t and t' in w(t) such that  hi( t )  = hf( t ' ) .  As fro(a) is a local homeomorphism 

around a, it implies that  the T-rays with the arguments t and t '  have a common 

line, which is possible if and only if an iterate of t and t '  are arguments of a 

critical point of f in W \ K ( f ) .  By hf( t )  = hf( t ' )  this is in fact a critical point 

of f'~(a). A part  of the assertion 2 ~ of Theorem 1 is proved, we postpone the rest 

to the final part  of Proof  of Theorem 1. 

Remark 3.2: We could not refer to Douady's  Lemma 3.2 to prove that  the set 

X in 1 ~ is finite because it was not known a priori that  X was compact.  

To proceed further and to be able to refer to Lemma 3.1 we need to know that  

(ii) holds. But this is the case, namely we have following 

LEMMA 3.3: I ra  is an f-periodic point in J ( f ) ,  then each iterate h~, n > 0 of 

the external mapping hi  restricted to A~(a) is at most 2-to-1. In particular it 

cannot happen that t # t' are in A~(a), hf( t )  = hf( t ' )  and t is periodic under 

hr. 

Proof  If  t, t ' ,  t" are different elements of A~(a) with the same image under h~, 

then by the fact that  f is a homeomorphism around a, the 7--rays corresponding to 
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t, g, t" landing at a have a common line l going up to a. This is impossible because 

the line l has only two "sides". The m a p / 3  from Section 1 is a homeomorphism 

from A* cut along needles (including the banks of the needles) to W \ K ( f )  cut 

along T-cuts. 

If h~(t) = h~(t') = t ~ g, then for an arbi trary t .  C h-]~(t ') N At(a)  we 

have t .  different from t and t ~ because the h~-images are different. Meanwhile 

h2In(t) = h ~ ( t  ') = h~ +l( t , ) .  This contradicts the first assertion in Lemma 3.3. 

PROOF OF 3~ As Ka ~ {a} there exists b C Ka \ { a }  accessible by an external 

ray R. To see this consider, for example, an arbi trary point z E S 1, not in X 

from the proof of the assertion 1 ~ such that  a K~-related ray /~ landing at z 

has r R converging to b. (In fact we do not use later the convergence 

of ~-1(/~).)  Write x0 = argB~ R. Then for d := AT(a), h := h~  (a) and m the 

period of the points in X under g, the condition (i) of Lemma 3.1 holds. This 

is easily visible in r coordinates, with the use of the Jordan theorem. Condition 

(ii) holds by Lemma 3.3. Thus Lemma 3.1 yields the assertion 3 ~ 

PROOF OF 4~ 4 ~ follows immediately from Lemma 3.1 because finitness of 

At(a)  implies the existence of an hy periodic point in A~(a) which plays the role 

of x0. 

CONTINUATION OF THE PROOF OF 2~ Let A be an invariant minimal set in 

A~(a) in the dynamics sense, i.e. every forward orbit in it is dense. A is infinite 

because AT(a) is infinite, hence it has no periodic orbits by 4 ~ So A is perfect, 

i.e. a Cantor set. We shall end the proof if we show that  actually A -- A~(a). By 

the minimality h / m a p s  A onto A. By the monotonicity of h / o n  A the set S 1 \ A 

can be decomposed into the union of sequences of open arcs Ij,n, n = 0, 1 , . . .  such 

that  h / m a p s  the ends of Ij,~ to the ends of Ij ,n-1 for n > 0 and the pair of the 

ends of each Ij,0 is a critical pair. We do not have any arc in S 1 \ A wandering 

forward, i.e. with ends never collapsed to one point. Otherwise we would have 

a contradiction with the expanding property. We remark that  no arc can be 

periodic (in the sense of having periodic ends); we have excluded it already. 

If it happened that  to E Ij,,~ N A~(a), then for the ends s, s ~ of Ij,~ we have 

h~+l(s) = h~+l(t0) = h'~+l(s'). This is not possible by Lemma 3.3. 

(Note that  if u, u'  are ends of an Ij,o and v E Ij,o, then hi(v)  ~ hy(u) = h/ (u ' )  
does not contradict the monotonicity if we take into account only u, v, u ~. To 

obtain a contradiction take into account a fourth point outside Ij,0. Another 
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idea is to again involve the map f .  Just observe that Ij,o A Ar (a) = 0. Every 

T-ray with the argument in Ij,o goes to a component of K ( f )  different from ga. ) 
The proof of Theorem 1 (1 r) is complete. 

Remark 3.3: We could lift the map h~ (~) on At(a) to a monotone map o n  

its preimage in R. This allows one to consider a rotation number, rational or 

irrational depending on whether At(a) is finite or infinite. It seems interesting 

to understand such sets and to study fixed point portraits depending on the 

combinatorics of these sets, cf. [GM]. 

Appendix 

1. F R O M  A POLYNOMIAL-LIKE TO AN E X T E R N A L  MAP VIA C U T T I N G  AND 

GLUEING.  

Let f :  W1 ~ W be the polynomial-like mapping from Section 1. Starting 

with the foliation T we construct the external map hf in a different way, via the 

hedgehog. 

Recall that A~ is defined as a subset of W ". K ( f )  formed by the union of all 

the T-radii, i.e. Ar is W ". K ( f )  with all the T-cuts deleted. Let 

K r =  W \ A~- , J r = O K r  

denote the filled-in Julia set and, respectively, the Julia set, completed by the 

T-cuts. These sets are closed. 

Recall also (Section 1) that Ar is homeomorphic to an annulus. 

Thus there exists a conformal isomorphism ~: Ar --~ ,4 = (z: 1 < Izl < e ~ }, 

where wr is the modulus of At. The map f :  Al,r -- Ar N W1 -* Ar induces a 

conjugated map ] = ~ o f o ~-1 of an open subannulus 41 C A , such that  S 1 is 

the common inner boundary of 41 and A. The inner boundary Jr  of Ar is the 

union of E, which is the union of all the v-cuts, and the Julia set J ( f ) .  Since 

every point of E belongs to finitely many smooth curves and is not in J ( f ) ,  the 

map ~ extends to a homeomorphism of the space ~ = {(z,/): z E E, l is a class 

of equivalent (homotopic) curves in Ar with the common end at z} onto an open 

subset E of S 1, [G]. The conjugated map ] extends continuously to S 1. We will 

denote the extended maps by the same symbols ~ and ] .  These definitions are 

illustrated in Figure A1. 
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LEMMA A.I:  Let 5 be a component o f~ .  There exists a unique point ~ = ~1(5) 6 

5 which splits the are 5 into two arcs 51 and 52, such that: 

(a) For i = 1,2, if  x, y 6 5i, x # y, then ]'~(x) # ]~(y) for all positive n 

(whenever fn (x ) ,  in (y )  are in A U  S1) �9 

(b) There exists a homeomorphism ra:  51 --* 62 such that for every x �9 5t  

and for some positive integer m depending on x, 

= �9 

This equality holds precisely for such m that ira(x) �9 A, i.e. ~ S 1 . 

(a) For x �9 (~1, i[ ]n(x) �9 S1 then ]nix  ) �9 fl a component of~ ,  ]n0ra(x))  �9 

and inca (x)  = r$]n(x) .  

52 

'] , ] ~ f - I ( q )  ~ )  

d J 

Figure A1. Cutting along ~--cuts. 

Proof: Consider the continuous arc a = ~-l(&) C ~. Denote the projection of 

to ~ by P. A positive direction on a induced by the positive direction given 

on P(a)  (given by the orientation of T towards J ( f ) )  is defined at every point 

of a,  except for the points of P- I (CI (oc ) ) ,  at which the direction can change. 

Let us go along a part of a in the negative direction, starting from a point 

(z, l) 6 c~ ". P - l (CI (oo ) ) .  Then we must arrive along P(a)  at a point q 6 Cf(oc) 

at which the direction changes. Let us prove that q is a unique point of P(~) 

with this property. Otherwise there exists a point ql 6 P(a)  N Cf(oc) which is 

a terminal point for two consecutive r-cuts P(a ' )  and P ( a " )  in P(a) .  Then we 

have two cases: 

If P(a ' )  # P (a" )  (see Figure A2), there are other T-cuts ;31, ;32 with the initial 

point ql, such that fll and fi2 lie on the different sides of the curve P(a )  (remark 
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that  at every point c of Cf(cc)  the directions of the v-lines with the end point c 

alternate to each other). It contradicts the continuity of a E ~. 

If P(a') = P(a") (we go along them in opposite directions) already the exis- 

tence of one r-cut  starting at ql contradicts the continuity of a. 

We have proved that  the point p-l(q) splits the curve a into two curves a l  

and a2, such that  the direction on each of them does not change. In particular 

P is one-to-one on each of them. 

For each i = 1, 2, if x, y E P(a~) and x ~ y, then f'~(x) ~ f'~(y), for all positive 

n for which the images are defined. This is so, for example, because M (Definition 

1.2), hence M o fn ,  is strictly monotone on each hi. On the other hand f maps 

the T-lines to the T-lines, and we have q E Cf(co).  Hence, for every z E a l  there 

exist a unique point Z E a2 and m E N, such that  fm(P(z)) = fm(P(Z)) E AT, 
and the correspondence z ~ Z is a homeomorphism a l  -+ a2. This induces the 

homeomorphism ~rh: 01 --~ 02, where 0i = ~(ai) .  The point ~ = ~ ( p - l ( q ) )  is 

the common beginning of both 01 and 02. 

/% 
.] 

ql 

Ph .] 

Figure A2. An impossible a c E. 

Observe finally that ira(x) E ,4 if and only if P~]m(x) belongs to a r-radius 

(i.e. it is already not in a T-cut). If we go backward and then forward along a 

r-radius to the same level of the function M, the points at which we start  and end 

coincide. We remark that  the map r a  defined here is just a mapping preserving 

the M-values (see Remark 1.1). This concludes the proof of (b). 

To prove (c) observe that ~--1]n(01) is the union of a continuous curve bx in 

(the concatenation of a sequence of P-preimages of r-cuts) and a part  R of 

a r-radius. So ~ -1 ]n (52)  is also a union of b2 in ~ and the same R. We set 

= ~(bx U b2). Lemma A.1 is proved. 
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We are ready to give the following definitions. Recall that A1 is a subannulus 

of A with the same inner boundary S 1, and E C S 1. Let A* and A~ C A* be 

Riemann surfaces formed from the open annuli A and ,41 as follows: for every 

component & of the set ~ C 0,4 let us glue every point x E & with the point 

7ra(x). Let 

H : A ~ A *  

be the projection. Consider 
= ri( i), 

vl,  = H( il) 

the surfaces with the complex structure a0 induced by the standard one from ,3,, 

and let 

hi: UI,, ~ U~ 

be the holomorphic map induced by ]: A1 ~ A. The projection H is defined on 

as well. 

The Riemann surface U~ is called the hedgehog-like annulus.  The inner 

boundary St of U~ is called the hedgehog.  The set II(~) is the set of the 

hedgehog's needles.  

THEOREM A.I: ao extends to a unique complex structure on A*. The map h I 

extends to an analytic unbranched covering map of the A~ onto the A* of degree 

d. The Riemann surface A* is conformally isomorphic to an annulus 

{z: 1 < Izl < 

Denote hi transported to this annulus also by hi. Then the restriction to S 1 of 

the extension of h f beyond S 1 is the external map of the polynomial-like mapping 

/ .  

Proof'. The map h/: UI,, -~ U~ is holomorphic and has no critical points. By 

the construction, hf extends to a continuous map of A~ into A* because, if points 

x, y E E are glued together, the points ](x) and ](y) are either also glued or 

coincide and lie in .~ (Lemma A.1 (b), (c)). Moreover, the extended map h / i s  a 

local homeomorphism, because the map ]: A1 -+ A is a local homeomorphism. 

To see that hi maps points x, y E A1, x ~ y, close to &l and &2 respectively, 

to different points, observe that ~- l (x)  and ~- l (y)  are in r-radii on different 

sides of the r-radius ending at p~-l({(&)).  The f'~-images (m from Lemma A.1 
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(b)) of these radii cannot hit the same r-radius if they are close enough to each 

other. The same consideration concerns x E &, y E A close to & or x, y close to 

4~5. 
Let N be a small neighborhood of a point in a needle so that ,  for some positive 

n, H = h~: N --* M is a homeomorphism and the image M is a subset of a 

neighbourhood of A* \ A~ c Ur. Let F be an arbi trary complex-valued function 

continuous in N and holomorphic in N A Uls .  The function F o H -1 is contin- 

uous in M and holomorphic there except for a smooth arc. This is a removable 

singularity for such a function. Hence, F o H -1 extends to a holomorphic func- 

tion in M. It means that  A* admits precisely one complex structure which is 

an extension of that  from Ur, and such that  this structure coincides with the 

preimage of the complex structure from a neighbourhood of A* \ A~ under the 

local homeomorphisms h) -~. It  is obvious now that  the map h / i s  analytic in A~. 

Moreover, it is an unbranched map of A~ onto A*. It  is easy to see now that  

A~ and A* are annuli and hi: A~ ~ A* is biholomorphically conjugate to the 

identically denoted map from Section 1 giving an external map. 

Remark A.I: We have proved additionally that  every needle of the hedgehog Sr 

is a smooth curve in A*. 

Remark A.2: As mentioned above we have constructed again an external map. 

So, up to an analytic conjugacy, it is independent of the foliation r and the angle 

r ,  though the construction of h/:  A~ ~ A* depended on r.  Let us explain it in 

more detail. 

We identify A* with a standard annulus {z: 1 < Izl < e~}. A~ is a subannulus 

with the common inner boundary S x, h/:  A~ --~ A* (hence F~ consists of smooth 

curves). The conformal map 

B~ = H o ~: A~ ~ U1,. 

conjugates flA1.T and hylu~,,.. 

Denote the objects introduced to define an external map in Section 1 (to make 

a distinction with the objects here) by h/ :  A~ ~ A*, /3~. The maps h I and 

h/  are conjugate on neighbourhoods of A* \ A~ and A* \ A~ by the map a = 

/3~ o (B~) -  1. We extend this conjugacy by ~-n  o a o h n (an analytic continuation) / / 
towards S 1 and then beyond it. Thus indeed hf is real-analytically conjugate to 

the external map h / f r o m  Section 1. 
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Observe that the same proof shows that the external map is indeed independent 

(again up to real-analytic conjugacy) of the choice of W1 C W in the definition 

of the polynomial-like map. 

Observe finally that  if h f  is fixed, the map B~ is defined up to an analytic 

homeomorphism of S 1 commuting with 

h f: S 1 ~ S 1. 

2. FROM AN EXTERNAL TO A POLYNOMIAL-LIKE MAP. 

We end this Appendix and the paper with a construction, which is inverse with 

respect to the above one in degree two (cf. [Go, Proposition 3.8]). 

Fix a real analytic mapping h of degree two of the unit circle S 1, with a 

neighborhood E of analyticity. We assume h - l ( E )  is a proper subset of E,  and 

E is symmetric with respect to S 1. Denote by A* the part of E outside the unit 

disc, and fix a point w. in A*. Given h and w., we construct a corresponding 

quadratic-like mapping (up to an analytic conjugacy in a neighborhood of its 

Julia set) with the d i s c o n n e c t e d  Ju l i a  set  as follows: 

Let I be a continuous rectifible curve in A* joining w. to a point wo on S 1. We 

assume that  the point wo is not periodic for h. We call the curve l ad m i s s ib l e  if 

all the preimages of I under all the iterates of h are palrwise disjoint. Let Eh(l)  := 

Un>0 h - n ( l )  �9 Then there is a conformal isomorphism 7r = ~rl of A* \ ~h( l )  onto 

a round annulus A = {w: 1 < Iwl < r}, and h induces a map h in v (h - l (A) ) ,  

which extends to its inner boundary S 1. The set 7r(Zh(1)) is also well defined. 

It is a collection of arcs on S 1. There exists a unique equivalence relation ,~ 

between the points of these arcs, which obey the following two properties: (1) if 

x ,-~ y, then if x # y they belong to two different arcs and, for an adequate n > 0, 

hn(x) = hn(y) E 7r(/); (2) the relation ~ can be extended to the unit disc (by 

geodesics in the Poincar6 metric) without intersections, i.e. ,,~ is a l am in a t i o n ,  

see Figure A3. The existence and uniqueness follow from [Th]. 

Now we contract each leaf of the lamination to a point, in particular we glue 

the pairs of points of the arcs 7r(Eh(/)) according to the relation ~,  and obtain 

a Riemann surface S, which inherits a complex structure from A. The surface S 

is a p l a n a r  R i e m a n n  su r f ace  since every closed loop in it separates it. By the 

Uniformization Theorem, we can consider S as a domain in C with the standard 

complex structure. The projection r A ~ S is a conformal isomorphism onto the 

image S' C S. The complement F, = S \ S '  consists of open arcs corresponding 
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to the arcs from r (Eh( l ) ) .  Note also that h induces a holomorphic map f on the 

part S ~ of S. 

"1 

Figure A3. Thurston's lamination. 

Denote by J the union of the bounded components of the complement C \ S. 

A pr ior i ,  it is a union of points and discs. Nevertheless discs are not possible 

because we obtain a standard picture: each component of J is the intersection 

of a centered sequence of holomorphic discs D~ so that all D,~ \ clDn+l have 

positive moduli bounded away from 0. 

We even obtain that J has absolute measure zero (repeating an argument from 

[McM]), that is, S is removable for the holomorphic maps outside this compact 

set J (see [AB]). 

This removability of J allows us to extend the map f to a holomorphic one in 

a simply connected domain W1 := S U J. Thus f is a quadratic-like mapping on 

W1 with the disconnected Julia set J. 

The map f (more exactly, a class of conformally conjugated maps) depends on 

the point w,, but does not depend on the initial arc I (whenever it is admissible). 

Indeed, let 11 be another arc in A joining w, and a point Wl E S 1, and f l  

be a quadratic-like map obtained in the above construction with the curve ll 

instead of I. Using the fact that f and f l  are holomorphically conjugate by 

H := r o 7rll o 7r~ -1 o ~/-1 in annuli containing the critical values cf  -- CtTrt(w,) 

and Cfl = r 7rh (w,) respectively, so that H ( c f )  = cf~, it is easy to see (extending 

the conjugacy by ( f , ) - i  o H o fn  and again using the removability of J)  that 

then the map f l  is holomorphically conjugate to f in their domains of definition. 

Thus, we have constructed a space Qh of quadratic-like mappings with the 

prescribed external map h. This operation is inverse to the previous construction 
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of an external map. So it allows us to introduce a complex structure of A* in 

the space Qh. If h(w) = w 2, then Qh is the space of quadratic polynomials 

fc(z)  = z 2 + c with disconnected Julia sets, the annulus A* is a punctured disc, 

and we obtain the Douady-Hubbard  theorem: the Mandelbrot set is connected. 

More precisely, there is a one-to-one correspondence �9 between the points of the 

punctured disc and the parameters  c outside the Mandelbrot set. Furthermore, 

this correspondence q2 is a holomorphic map since, by the construction, its inverse 

coincides with the Douady-Hubbard  map Bc(c), where each B~(z) conjugates fc 

with z ~ z 2 in a neighborhood of infinity containing c [DH1]. 
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